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ABSTRACT

In this report two stochastic optimal control problems are solved

whose performance criteria are the expected values of exponential

functions of quadratic forms. The optimal controller is linear in both

cases but depends upon the covariance matrix of the additive process

noise so that the Certainty Equivalence Principle does not hold. The

controllers are shown to be equivalent to those obtained by solving a

cooperative and a noncooperative quadratic (differential) game, and this

leads to some interesting interpretations and observations.,

Finally, some stability properties of the asymptotic controllers

are discussed.



1. Introduction

The so called LQC prcblem* of optimal stochastic control ri]

possesses a number 'f interestinR features. First, the ovtimal feedback

controller is a linear (time varying) function of the state variables.

Second, this linear controller is identical to that which is obtained

by i eglecting the additive gaussian noise and solving the resultant

deterministic LQP** (Certainty Equivalence Principle). Thus the con-

troller for the stochastic system is independent of the statistics of

the additive noise. This is annealing for small noise intensity, but

for large noise (large covariance) one has the intuitive feeling that

perhaps a different controller would be more appropriate.

In this paper we consider optimal control of linear svstems disturbed

bv additive gaussian noise, whose associated Performance c:iteria are the

expected values of exponential functions of negative semi-definite and

positive semi-definite quadratic forms. We shall refer to the former

case as the LE'nroblem and the latter as the LEft problem and to their

deterministic counterparts as LF.- P and LE+P respectivelv. In the deter-

ministic cases, LE±P, the solutions are identical to that for the LOP

(the natural logarithm of the exponential performance criteria vield

+
nuadratic forms). However, when noise is present, LF-C Problems, the

S*

Problem with linear dynamics disturbed by additive Raussian noise,
together with a performance criterionwhich is the exnected value
of a Positive semi-definite quadratic form.

Same as LQr, problem but with noise set to zero.

2'
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ontimal controllers are different from that of the LQ( problem. In

particular, though as in the case of the LQ(- nroblem these are linear

functions of the state variables, they depend explicitly upon the

covariance matrices of the additive gaussian noise. For small noise
+

intensity (small covariance) the solutions of the LE-G and LO- problems

are close, but for large noise intensity there As a marked difference.

In particular, as the noise intensity tends to infinity the optimal

gains for the LE-C problem tend to zero; intuitivelv this implies that

if the random innut is "very wild" little can be gained (in the sense of

reducing the value of this parts cular performance criterion) by con-

trolling the system. In the LE+G Problem the optimal controller ceases

to exist if the noise Intensitv is sufficientlv large (that is, the

Performance criterion becomes infinite, regardless of the control input).

These new controllers, which retain the simplicitv of the solution

of the LQG problem, could Prove to be attractive in certain arplications.
+

In addition to formulating and solving the LE-G problems we demonstrate

that their solutions are equivalent to the solutions of cooperative and

noncooperative lineaz-quadratic zero-sum (differential) games. These

equivalences provide internretations for the stochast4- controllers in

terms of solutions of deterministic zero-sum games, and v.-e versa. It

is hoped that these equivalences will aid in the quest for new formulations

and (Proofs of existence of) solutions of stochastic nonlinear systems and

nonlinear differential games.

+

We investigate briefly the infinite time version of the LEG problems

and point out that the steady state optimal controller for the LE G problem

is not necessarily stable. On the other hand the steady state optimal

controller for the LE+G problem, if it exists, is stable. Titus the

LE+G formulation may be preferable in the infinite time case.
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2. Foruulation of Discrete Time LEC+ Problems

2.1 The LE C. Problem

a) I~nmc

We shall consider a linear discrete time dynamic system

t described by

xkl- A.kyB kuk +rkt. ; k-fl,...,N-1, xo giien, (1)

Ii

where the "state" vector x k c R , the control vector u k R7 and the

gaussian noise in ut R The matrices A B r have anpropriate

dimensions and depend upon the time k.

b) Noise

The noise input is a sequence {a~k} of indenendentlv

distributed gaussian random variables having probability density

N-i
. u of R D( sck) (2)

a N -+ anR xI+

wherevn h L+R isgivenbv

exa) exnTPca (3)
2 'kk k

with

e k a> 0 (positive-definite) d t,.e (4)

Note that

I tAkl -BkErka k l p1 ; k ,..N- ,iln, (5)

where 9 denotes expectation.

ditiue asInrnotalalshvn rbblt est

N-
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c) Performance Criterion

The performance of the stochastic linear system is measured

by the criterion

AN-
~o k=0

whereV :R *[-l,n] and - :R X I+ [n,l], p- R x I [n,i]

are given

1 k(X ;k)  I xkTQ ; k-O,...,N (7)U =e,(--x k 2 k k.

i(u ;k) e uR kuk. kiO,...,N- ()

ar.d

Qk 0 (positive semi-definite) ; k-n,...,N (9)

Rk > 0 (nositive definite) ; k=f,... ,N-1 (10)

Note that (6) can be written as

N-I
V(x) - - x exp {- + (11)(Xo -2 -O 2 (x ek Uk k Kk) xN NX11

0x k

d) Problem

We are reouired to find a policy

uk" Ck(Xk) ; k-0,...,N-l ; Xk - %,l,...,xk} (12)

which minimizes verformance criterion (11). Thus the nroblem is identical

to the LQC nroblem except that the performance criterion is the neeative

of the exnected value of an exnonential function of a negative semi-

definite nuadratic form.
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Note that V (x 0 for arbitrary controls 1tik I is bounded as

follows

-1 V V(x0 ) 4 0 (3

2.2 The Le+. Problemi

The formulation is the same as the LE Pexcent for the P'erformance

criterion which is

+ AN-i + + 4V1 (x 0I 9I 1 1 (x k k'j (uk;k)vxxNN (14)
okm0k(uk (x)N

whereV :R fl,x], andp v+ i x I+~ w, R7 x I -9rl,ao)
x U

are giver, by

lj (xk;k) - exp{-:t IQkxk} ; k-l..(15)

with Q k' Rk as in (q), (1n).I Note that (14) can be w-itten as

V+ (x0)-6i exp 1 N X (xQ xk+uiRuk+%Qx1 (17)

The problem is to find a rolicv

+ - CK ~) ; k - n,...,N-1 NX. (18)

which minimizes Performance criterion (14). Ag'ain this P'roblem is

identical to the Ln(, Problem except that the performance criterion

is the expected value of an exronential fuinction of a positive seni-

definite quadratic form.

Note that V'(x ), for arbitrary controls {uk,1, satisfies
0

0 C V+ 0() 4 0
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3. Formulation of LE-P

If no noise is present

i - 0  ; k - 0,...,N-1 (20)

Min-m.a.jtion of (11) and (17) is equivalent to minimization of

1 T T +T (21)
-i2 (xkQkxk+Vkuk) XNQNxN]
k-0

subject to

xk+1 - Akxk BkuA ; k - 0,...,N-1 (22)

which is a standard LQP. Thus LE-P and LE+P are eouivalent and both

will be referred to as LED. As the solution of the LQP is well known,

we state it now without Droof.

The optimal controller for the LEP(LQP) is

uk M -Dx ; k - 0,...,N-1 (23)

k k

where

T -i T
Dk = (Rk+BkMk+IBk) BkMk+iAk (24)

and

,RB)BK ] (25)

with

N- Q(26)

In view of our assumptions (9), (10) it is easy to show that

V o n k = ,...,N (27)-'k

so that

(Rk+BT .kBk) > 0 ; k = 0,...,N-l (28)
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4. Solution of Discrete Time LE- Problems

4.1 The LE-G Problem

We define

N-i
J-(Xk;k)-- min 9IX k(x ;')(u (2q)

uk ... uNl k i-k ,x i u i)IIx.~

given that the minimizing optimal policy must be of the form

u i (X) ; i k,...,N-1 (30)

At time k+l, then,

N-1

J-(Xk+l;k+l)=- min 1 i T 1 px(x i;i)ip(ui;i)px(x N;N) (31)UiN l I k-4 i-nk*l X XN

so that

J-(Xk;k) [ in ;k)j(uk;k)' XkJ-X k+')] (32)

[Xxk k u k' X k+l'
uk

where

Xk+l=AkXk + BkUk+rkk ; xk given (33)

Because of the Markov property of (33) which is due to the independence

of {ak I it is clear from (29) that J-(X,,;k) can be written as J-(xk;k)

so that (32) becomest

J-(xk;k) x i (Xk;k)j (Uk; k) P(ck;k)i-(xk+l;k+l)dkl (34)
u k

k

and

(T(XN;N) = - exp {- 1 TQNXN• (35)

We now show that

J- (x;k) -kF exp (--f x x (36)

tAlternatively, the development could be continued using (32) and

identical results would be obtained.



I iahich is defined for I- ,.., solves (34) wbere

W k 0 k(37)

is given bvi

-T T- - -
+BW B) BW-k~l lllk_,Al (38)t ~ Ak .kl kRl k k+lk kk'-

wahere

k+1 k-I- K+lk k~ 11k -

and

"N N" (0

In addition we have that

* k 1p1 1kk FkN=1 (41)

and the optimnal nolicv is

uk - kxk (42)

where

-A T- - -1iT--
Sk (kBk Wk+l Bk k k+'k k-0..N1 (43)

in order to nrove that (36) and (42) solve (34) we need the

fo11owine, nrobab~v v.ei1 known but underexploitpd,

Leiuna 1 I, f (P+TW P '> n, then
*k 1-4-1 k

ex 1 T i x T J-dt

2x '- 2 kkI 2 k-i k+i k44 k

k
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where W 1  is defined in (39).

Proof: See Anpendix.

Substituting (36) into (34) and using the Lema and (41) we obtain

1_ _ TI- - mi -Pf(xk;k)ui(u ikexn{- 1 (A.+Bk U )W (A.x.)f"
~x*~ kl u~ x uk 2 x~kIk k+1Ik k

k(45)

which, upon taking logarithms is eouivalent 
to

1 T.,- 1 mnT^. T o+ A+ u T- x46)
2WkXk 2 U kkV... kxkkuk . ..... .k)] (46)

Eouation (46) is satisfied by (38), (42), (43) so that the LEQ nroblem

is indeed solved. As in the LEP ULQP) it is easy to verifv that, under

assumptions (4), (q), (i0), and Wk are positive semi-definite for

k - O,...,N so that

('Pk+r N+1 rk) > O, (R+BkWk+lBk) > n (47)

which ensures that (38), (39), (41), (43) are well defined.

4.2 The LErC Problem

Here we define

mm N-1 + (48)

"k" "'k-1

given that the minimizing optimal policy must be of the form

ui C ) • - k...,N-1 (49)

so that proceeding as in Section 4.1, we obtain

J+(xk;k)- min !(xk;k)v(uk;k) r(O k;k).T+(x k+l)dk (50)Suk x
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: and

+~ ~ T Q~N (51)and .XN; N) exp~ (I xQNcN1()

The solution of (50), which is analogous to (36) is

J(xk;k) '- F'exp i 'k 'Y (52)
+ -2

which is defined for k - 0,...,N, where

+ T~+ ~++ ~+ -T-

+ A T W (R+B1J+B)BTWI 1]k (53)
'k Qk+ V k+l-Wk+l% k kl k+ k'-

where

+ + T + -1
Wk+l .Wk+l+W kr(Pk-rw+lrk) Twk+1

and

';" QN(55)
- QiIQ

In addition, we have that

+ (P-r lkk )+l k
F k+l l !  ; F - (56)

and the optimal policy is

uk = -CkXk

where

+, A +T-+ -1 T-+

Ck = (Rk+BkWk iBk )  BkIk+lAk ; k=0,...,N-I (57)

In order to verify that (52)-(57) solve (50) (which we will not

do here because the Procedure is almost identical to that for the LEG

problem) it is necessary to use Lemma 2, which we state below, which

is useful cnlv if
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Tw:T , r > 0, k - 0,...,-1 (58)
Pk k+I k

If (58) is not satisfied, then (52)-(57) do not constitute a meaningful

solution for (5n) since it follows from Lemma 2 that

J(xk;k) is infinite. (59)

Lemma 2 If ,IITP- N+I r > 0, (60)

then

e 2l V- kkAk  2 e ' -k+lN~~+l k

(611
P -rT14+ r (-11

k kk+1 k {IA+ T-)

ex 1p11 XP2K k ) k k k+l(Akxk+Pkuk)l
k (61)

Moreover, if

P-P ' r$n (62)k k k+l k

then the left hand side of (Al) is infinite.

Proof: See Appendix.

5. Properties of Solutions of Discrete Time LE-, Problems

5.1 The LEC Problem

The optimal feedback controller for the LE G problem is a linear

function of the system state,

uk C k ; k- n,...,N-1 (63)



where kidped upon the solution of a Riccati type difference equation

(38). The main difference between this and the feedback law for the

.U., Problem is that Ck depends upon Pk , h cov~riance marxof

the gaussian additive disturbance In the LQG case the ontimal feed-

back law is indepen.'ent of the covariance of -the input noise and, indeed,

is the same as that for the deterministic LQP (so called Certainty

Eauivalence Principle). Here, in the case where our criterion is the

eimected value of minus an exponential function of a negat'.ve semii-

definite quadratic form, the Certainty Equivalence Principle does

not hold.

It is interesting to investigate two limitins cases; the first in

which A mn( 00(nu kF0k-0,... ,N-1) and the second In

which A k -1 (input "infinitelv wild").min k

i) A kmin,(P.,k-k

In this case it is clear* from (36), (38), (30) that

C *Dk k k-,... ,N-l (64)

the optimal gains for the LOP(LEP). Note, from (36) and (41) that

J (x k;k) *.-exn x- k ,Wkx k , k - 0,......N (65)

Thus for small noise intensities (P- small, km0,. .. ,N-l) the solution
k

of the LEGC problem is close to that of the LEP, LQP, and LQrG problem.

ii) Xi(P-1 ) -- :k 0..Nl

Here we shall assme that

r Q~l' >0 ; k ,...,N-1 (66)

These limiting cases can be argued rigorously; the arguments are straight-
forward and are left to the reader.
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so that, from (37) - (39),

k lk P ; k O,...,N-1 (67)

as P k 0, then, we have

.. .kT -'k-l Ik

-1T-W "  -W;+,r (rTw ) 1 ; k = ,....N-1 (68)
1$-i k+ ~ k k k+1 k k+

and, from (36) and (41),

J(xk:k) n 0 k = 0, ,N-1 (69)

Note that if rk has rank n for k - 0,...,N-1, that

Wk+l - 0 ; k = n,...,N-i (7n)

so that

C - 0 ; k = ,...,N-1 (71)

An explanation for (71) is that if all components of Y are

disturbed by an "infinitely wild" additive noise then there is no

point (as far as nerformance criterion (6) is concerned) in exercising

control to try and counteract these infinite unnredictable disturbances.

Of major interest are the cases in which

n i < ; k- O,...,N-1 (72)

for which the new controller (42) offers an alternative to the standard

LOG solution.

5.2 The LE +, Problem

As in the LE nroblem the Certainty Eauivalence Principle does

+
not hold because Ck denends upon the covariance of the additive process
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noise. We aghin consider the two limiting cases of zero nole ad

"infinite" noise.

i) Xm k I k = O,...,N-l.

In this case, as the covariance matrix tends to zero, we obtain from

(52) - (57) that

: •D k  k k ,.,- (73)

and

j+X)+ 1.I T +
J (xk;k) - exv f-:1 x~Tkxk k * f,...,N-l (74)

so that for &.%all noise intensity the solution of the LE+ problem is

close to that of the LEP, LQP, LQG problem.

ii) X ( ) ; k - ,...,N-.
min k

For Pk sufficiently small (i.e. large covariance) the solution

of (50) can cease to exist (indeed (48) can become infinite). To see

this, let us assune that

"Tk Qk+i rk > 0 ; k = ,...,N-I (75)

and that

p w. r > o k+l,...,N-l. (76)J-r: wi+l

From (75), (76), (53), (54) we have that

Tk+ir > 0 (77)
Vk

so that for Pk sufficiently small

p r T + r i (78)k + 1Pk kk+lrk O(8



-15-

which implies from Lema 2, that the left handI side of (6n) is infinite.

Clearly, then, from (50)

+
J(xk;k) is infinite . (79)

Since k is arbitrary, k C In,...,N-l1, we can conclude that if the noise

coveriance is sufficientlv large, the verformance criterion (14) is

infinite, regardless of the choice of controls fuki. We shall have more

to say about this interesting case when we treat the continuous time

LE+G problem in Section 8.

6. The Discrete Time LE-G Problems and Deterministic names

6.1 The LE G Problem

The solution of thep LE , problem is, by inspection (or short

calculation), equivalent to the solution of the following cooperative

deterministic game (LQP).

N-1Minimize 1 1 T T T I T

12 (XkQkxk+ukUk+hPlC'k) + xNQNxN'
fuk Ofkl k-fl

subject to the dynamic constraint

Xk+ AkXk+kk+rkak ; k - 0,...,N-I, x given (8:)

It turns out that
TIN-1 T TIT

W . min r x ( Qix +uj u+a P E) 7 X Y11 (82)

2 Nk tha"fu i teao foru ik i 2 o a ntr o las

f Note that in the above formiulation we determine ontimal control laws

ukinCkxck Ax k - fl...,N-l (83)

V~ ~ ~ ~~ Al----------- --k --.Y--
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We now have a new interpretation for the linear-ouardatic game:

If nlayer uk assumes that plaver cL will cooperate in minimizing the
K

quadratic criterion (even though uk knows that ak behaves like a

gaussian random variable), then the feedback controller (policy) that

is obtained for Uk, upon solving (8n) and (81), namely

U--Cyi : k 0,...,N-1 (84)

is optimal also for the LE C problem. Thus the policv for uk obtained

by treating as a cooperative .laver makes sense when interpreted

as the solution of the stochastic LE- problem.

6.2 The LE+C Problem

Here, the aeterministic pame that has an eauivalent solution

is non-cooperative, namely,

min max T T T 1 T

{uk}{cik} 2 k-fl K~x Ru- kk + xNQNXNI 85

subject to (81), where uk and + are determined as feedback laws

(policies)

. . -Ckx k ,  -AkX : k - 0,...,N-l. (86)

It is well known that if

k kk+IlkPk~r k W) ;~ k ,, n,...,N-i (87)

then

-1 NIT T T T

2x1kWkk=min max [ - (xiQi+UiRiUi-iP 2)1T
--i ia k
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If the determinant of the left hand side of (87) is nonzero but the

matrix fails to be positive definite then as s well knmcvn (85) ceasos

to be bounded. However, if the left hand side of (87) is singular

for some values of k c fO,...,N-1} then (85) may exist. Thus, provided

IPk-r + r # o ; k - o,...,N-l (89)

we have, from Lenma 2 and (87), (88), that (48) is finite (for k - 0) if

and only if (85) is finite.

Out interpretation of the above noncooverative deterministic game

is as follows: If player uk assumes that vk will not cooperate in minimizing

the quadratic criterion (even though uk knows that ak behaves like a

gaussian random variable) then the feedback controller (policv) that is

obtained for Uk, upon solving (85), namelv

u -Ckx k  ; k 0 0,...,N-1 (9n)

+
is optimal for the LE Ce nroblem. Thus this rather conservative game

formulation in which the noise ik is treated as a noncooperative player

gives rise to a control policv which solves the LE+C stochastic control

problem. When looked at frcm this viewpoint the min-max game solution for

Uk ("worst case design") does not appear to be too pessimistic, since the

performance criterion of the LE r, vroblem is rather apealing.

7. Formulation of Continuous Time LE±r, Problems

t 7.1 The LE C Problem

In continuous time, the LF C nroblem takes the form

Minimize -, expf-r - (f(X TQx+U TRu)d +1 X(t )QfX(tf)1l (91)
u(.,.) 0 

2tf

0?
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subject to

k Ax + Bu ra x(t o ) given (92)

where, for notational sizmlicitv, time dependence of the variables

has been surnrressed* and where a(.) is a gaussian white noise nrocess

having

t 0 ; t C [toltf ]  (q3)

f[a(t)aT(s)] P-16(t-s) ; t,s [totfl (q4)

where ! !s the dirac delta function.

r Note that in solving (91) we seek an optimal control nolicv

u-(Xt) C (X'c) ; t F. 'ttf ; X afx(T);Trto,t]} (95)
0 0

where C : x I  RTO is a measurable function of Its arpuments.

7.2 The LEfC. Problem

I!!ere, the nerformance criterion to be minimized is

1 f Tf 1T
g ~l exp{-1 j (xTQx+u Ru)dt +- xT(tf)Qfx(tf) } (Qf;

o t
0

and the renuired control nolicv is

M(Xt) - C (Xt) t C rtotf ]  (97)

4-

8. Solution of Continuous Time LE-, Problem and Relation to Differential

C. ames

8.1 Solution of ILE- Problems

lie can solve thi continuous time LE r, nroblems either bv formallv

*Note that Q 4 0, R > 0, P > n for all t c [totfl, and Qf .

I
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taking the limit of the solutions for the discrete time cases or by

solving the "get tralized" Hailton-Jacobt-Bellman tiuation (see

appendix for derivation)

33 1 a(T T a x t +J~~~~T(A +
- (x,t) - mint 2 a(x Qx+u Ru)J (x, t)+rJxt) (Ax4Bu)

U

+ -1 t: :J (x,t)rP-lrT1 (9R)
2 xx

-,where he- : for LF-G problem

for LE+C problem

which is satisfied by

J (x,t)- exp{arI fTQx+udRut
Ix(t) 2 jt2 f)QfX f)(l)

where

U (x,T) C (x,T) : C e [t,tf1 (In01)

is the optimal nolicv.

Using either method we find that

uY(x,t) --R- B TS ax : t C rt ,t f (102)

and

Ia (x,t) - cV ex To 'I x TSx} (1n3)
2

where

-s -Q+SSA+ATS-S (BR-BT_-aP T)S S (t =Qf (1n4)

and

a n T a- tT
-F 2 oF tr(SP T) r r (t f) (105)

IJ
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8.2 Relation to Continuous Time Differential Games

By inspection we see that the optimal controller for the LE C

problem (O negative) is obtained from the solution of the following

cooperative differential game

*ftf 1 T T TIT
Minimtze (x Qx+u Ru+a Pa)dt + (l0 )u(.),at(.) ft o (f)f (:

subject to

SAx + Bu + ra ; x(t ) given (107)

where we reouire the optimal controls in feedback (policy) form

u-(t) - -c-(t)x , a-(t) - -A-(t)x(t) ; t c fto, tfl (108)

which results in

1 T-rt 1 xTt)Qxt)
x S (t)x(t) - min [I f (xTQx+uTRu+aTpa)dt+ -2 xT(tf)QX(r

(109)

Because of our assumptions of posit:!ve (semi)-definiteness of Q, R, P

and Qf, it is known that S (t) exists for all t C [to,tf] so that

(91) is well posed.

In the case of the LE+C problem the aDpronriate differential gamne

is noncooperative, namely

ftf 1  T T T 1T
Min Max -2 (x Qx+u Ru-a Pc)dt+ -x (tf)Qfx(tf) (110)

u(.) a(.) t

subject to (107). The optimal feedback laws are

u +(t) - -C (t)x , a+(t) = -A+(t)x ; t c ft 0 tf ] (111)
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and

1 T
x (t) (tx(t) m in max t1 xxju-Tad

u(.) a(. It QxuR- id

+I T+ x (tf)Qfx(tf) l (112)

provided that

- S SQ+SA+S+A-S4(BR-T-- -rT)S +  ; S+(y Qf (113)

has a solution in [tttf.

Note that by standard results on Riccati differential equations,

(113) has a solution for all t (to'tfI if

(BR-BT -rP-IT) f, t £ [ttf] (114)

f

and so (116) guarantees existence of J+(x,t) • t C ftotf 1. If (114)andf

is not satisfied (say for \ mn(P - ) sufficiently large) then (113) may

exhibit a finite escane time (S(t) " c for some t E [totf ]) which would

imply that (110) is unbounded and also that .J+ (xo;t ) is unbounded.
0 +

9. Properties of the Solutions of the Continuous Time LE G Problems

9.1 The LE-C Problem

As in the discrete time case we have that as P -1 t r !t I
o9' f

S-(P) t E rto~tf] the cntimal controller tends to that for the

LOG problem. As X (P- ) - =; t e [to t I problem (106) becomes

singular and care must be taken in studving the limit - see [21 for a

careful treatment of the singular case. Usinz arguments veiv similar to

those given in f2] it is nossible to show that as X rin( p-1 t C rto tf] ,



I

the limit of S must exist, t C (t ot I. Now if we make the assumotion

that

T' has rank n ; t c !t,tf (115)

then from (in4), (with O negative) and the fact that the limit of S':

t C (t 0 ,tf] must exist, it follows that

nS - ; t c (totf] (116)
opf

which tells us that

R-1pTS- PS n ; t C ' (to'tf (117)

which is analogous to the discrete time case (71).

9.2 The LE C Problem

As Xmn (P) -.M, t [to,t we have that the solution of the

LE+ Droblem, as in the LE-r case, tends to the solution of the TL1 ;

problem. As noise intensity increases, (P - 1 ) ; t E rt oCf
min o d

(114) will cease to be satisfied, and ultimatelv (113) will exhibit

a finite escane time signifying that J+ (x,t ) has ceased to exist;

i.e., for sufficientlv large no.se intensity, verformance criterion

(96) is unbounded. Note that contrary to the LE-G case, (117), we have

that

R-BTS
+

• * ; t E [tot f  (118)

as

X min(p -1 t rt 0 to f ]  (119)

:'"'. . .....' r .... l . . ," 'r ... ... , ..... i " .. .." . .... . .. - ...... ,...mill, , ,, , ,



-23-

in. Some Stability Properties of Undisturbed Linear System Controlled+
by Solution of LE-C Problems

In this section we assume that all varameters are time invariant

and we investigate, briefly, stability of the system

x = (A-BCy)x ; t negative or positive (120)

10.1 Stability Properties of C,

Here we assume that the rair (A,B) is controllable and that

0 > n. These assumptions guarantee the existence of S., the unioue

positive definite steady state solution of the Riccati eauation. That

is, S > 0 satisfies

-T- - -1 T -
Is

Q+SmA+A S,,- Sm(PtBIB+r -IrT)s', M (121)

and we have the steady state feedback gain

C- U POT (122)

We now define

L J- (123)

which is Dositive definite. Along trajectories of (120), we have

- 1 T - T- T - -1T -
L- xT (SA+A Sa)x - x SBR B S~,x (124)

which, upon using (121), iq

'I xT [Q+S (BR-1B T-1P- PT)S] x (125)
2 C

Now if

BR- BT-p-r rT  n A (126)

we have

L < 0, for all x 0 0 (127)

it-A
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and syste (120), vith controller C, is asvatoticallv stable.

Note that simple exammles show that (120) can be unstable if

condition (126) is violated.

10.2 Stability Pronerties of C!

In this case ve assume condition (114), namelv

BR7B T  rp-lrT 0 (128)

and also that 0 > 0. Note that because of (128) we can write

NNT a BR-lBT-rp-IrT (129)

If we assume now that the vair (A,N) is controllable then it follows that

there exists a unique vositive-de-finite matrix S+ which satisfies

+ T + + -1 T-1T +
Q+S.A+A Sr-S.(BR B -rP rT)S0 - (130)

and

-RlBTS +  (131)

Define

L x S+x (132)

Along trajectories of (120) we have that

1 T + T+ T+ -1T+

2 x (SmA+A S,,)x- x S,,BR B S x (133)

which, upon using (130), is

I xTr+ TS(BR-IBTrp-rT)s+]x (134)

< 0 for all x 0 0. (135)



Here. L is a Liapunov func:tion and (120) with controller Cis

asymptotically stable. Note the interesting Point that (126) is

sufficient to guarantee asymototic stability of (12n) with controllers

o..r C,.. In the first case, (126) is used to guarantee negativity of

U while in the second it is used to guarantee existence of +

11. Interpretation of Stab ilitv Results in Terms of Infinite Time

LE G Probleas

j Clearly, from (103), (10)

J (x,t) -~ 0 as t - (136)

and

+

orIn order for LFEr Problems to ma ke sense, therefore, we defin:e 7

orinfinite time criterion as

1

(4 xTx.u TRu)dt+c (Tf)(ttf (138)

Note that from (103), (105) (138) is equal to

expfitr(S~rP rT . (139)

In the case where a is negativ, and the noise intensity is large

arn unstable control law may be optima;. because in (13R) the nuantitv whose

expected value is calculated is bounded belcw byminus one and above by

zero regardless of the control that is annlied.

Note that when cy is Positive an unstable control law cannot he

optimal berause the ouantitv whose expected value -As calculated is



-26-

unbounded; this is confirmed by (135) which indicates that if an optimal

controller exists for the infinite time LE+G problem it must be stable.

12. Conclusion

In this naper we have nresented explicit (modulo solution of Riccati

difference or differential equations) solutions of stochastic control

problems having linear dynamics, additive gaussian noise and exnonential

objective functions. These solutions are linear feedback control Dolicies

which depend upon the covariance matrix of the additive nrocess noise

so that the Certaintv Equivalence Principle of Li- theory does not hold.

In certain applications these new controllers may be nreferable, esveciallv

nerhaps in economics where multinlicative objective functions are of

intrinsic interest.

Bv demonstrating certain equivalences between our stochastic control

formulations and deterministic differential games we are able to give

a stochastic interpretation to min-max ("worst case") desien of linear

systems. This suggests that the "pessimistic" min-max design is not

unattractive since it corresponds, in a stochastic setting, to minuization

of the expected value of an exponential function of a auadratic form,

which is quite an appealing criterion. Another significant result of t.ese

equivalences is that existence of solutions of the stochastic control

problems implies and is implied by existence of solutions of the differential

games. Hopefullv these notions can be extended to provide existence results

for nonlinear stochastic control problems and nonlinear differential games.
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Certal. stability properties of the steady state solutions of

the stochastic control problem are also investigated. In particular,

we oint out that the steady state controller for the LE-C roble

can result in an unstable dynamic system while the steady state controller

for the LE +G nroblem, if it exists, always stabilizes the dvnamic

system. In this sense, the LE +G formulation is nreferable.

ote t1at we hay* not considered in this ""ir the more cormlex

prole- IT, which noisy measurments of the state are wade, viz.,

zk= H kXk+Sk ; k - O,...,N-1. tl40)

where {Bkak,x o)} are independent gaussian random variables. In this

casc the optimal controls are restricted to be of the form

CY C(Y k(141)

where is - or + and where

k ,ozl"."'z ; k - 0,..., N-1 • (142)

The appropriate performance criterion is

N-1
V'(z) 0 e 1 exp fa - kL (xQkkRuk)+x'QNN]1 (143)

o k-O

The above problem appears -- be intrinsically much harder than

the perfect state case, and could be the topic of a future paper.
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Ar pendix

L ma 1 If Pk 4Wk+l'k 
>  then

e= V- M- i.' f: - * " *-
ex -; X,

i - e-1 : .!(2-) extk:

I i" I(k(P."T- rsdfndi 3)

k

w re W is re in (39)

wherek+l

Proof.-' 7he left hand side of (A.1) is, using (1), eaual to

2 k k Uk+-1- k ) Wk-A (A k + Bk u k .3k )k k ' k

c1. Pk F exp.. (AkxkB )Bkuk) "

exD, 2 'R W k-1 .k.O -1k d
+ r T W-r 11

V(')q( k +k Wk+lrk )  (A.2)

where

C~k -" (P rk) -1 T - (A. 3)
"- _p+k~ k) 'kWk~l(Akxk+Bkutk)



V

The Lena is proved by (A.2) since the integrand is a probability derSitv

function having mean a. and covariance

k 'k k+r k

Lema 2: i) If P _ " > n then
k k k+-k

~ (~q~,Iexp - r~kk ~ . d%-l

Proo * i) Th k4roli) h am sta of a41wih.B i ell

(_- q 1 2-+ (A.5

l krwhere W k41 is defined in (54).
ii) if (P .T + r)O (A. 6)

then the left hand side of (A.5) is infinite.

Proof: i) The proof is the same as that of Lenma 1 with Wklreplaced

by-+
by k+l*

ii) We have that

exp{,-QPk'k,•ex" 2 xik+lWklxk+l

If T)T W(A.7)
2 ex&- 1 I kP (A.kxk+Bkkk1.(Ak+~Bkuk+rk1.W ~ (A 7

and we note that because of (A.6) there exists a direction a* such that

the right hand side of (A.7) does not go to zero as !-a.jI I - . Clearly

this implies divergence of the integral on the left hand side 
of (A.5).
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Generalized Rfilton-JACOb 1-3.11383 fqurtlof

Here ye derive equation (98).

From (100) we have that

*2j

at ep' 11 t+-"x -r+u f Ru , dtI J"(X+6xlt+6)
x~t) it

-l 1 (T ~4 UT -- )5+ ],Jo(x,tO+j j (Ax+Bu-a) 8-J'A

IX ~ 1 I 2c-2 (xA.9)u t

-1 (Ax4-Bu4ra) TJ" (Ax+Bu4-rc) 5 2 ..

2 xx

Loon taking the ernectation and the limit as i ~ we obtain, formally,

cj 1 T-iTa

or -(x~t) -i U {x y'xTuxRu RuX~)+[ (X,t) (x+)) A--u

.t t (77 (x t

1 x 1(~i

,-1 tr[JG (x~t)rp-lTlx(.1

which is equation (98).


